
KB Vorspann-Technik

Allgemeine bauaufsichtliche Zulassung Z-13.3-78

und mit 02 bis 16

A Global Network of Experts

www.bbrnetwork.com

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts Mitglied der EOTA, der UEAtc und der WFTAO

Datum:

Geschäftszeichen:

27.10.2017

I 15-1.13.3-7/15

Zulassungsnummer:

Z-13.3-78

Antragsteller:

BBR VT International Ltd Bahnstraße 23 8603 SCHWERZENBACH/ZURICH SCHWEIZ

Geltungsdauer

vom: 2. September 2017 bis: 2. September 2020

Zulassungsgegenstand:

Litzenspannverfahren VT-CMM D für externe Vorspannung

Der oben genannte Zulassungsgegenstand wird hiermit allgemein bauaufsichtlich zugelassen. Diese allgemeine bauaufsichtliche Zulassung umfasst 18 Seiten und zehn Anlagen. Diese allgemeine bauaufsichtliche Zulassung ersetzt die allgemeine bauaufsichtliche Zulassung Nr. Z-13.3-78 vom 14. Juli 2014. Der Gegenstand ist erstmals am 5. Juli 1996 allgemein bauaufsichtlich zugelassen worden.

Seite 2 von 18 | 27. Oktober 2017

I ALLGEMEINE BESTIMMUNGEN

- Mit der allgemeinen bauaufsichtlichen Zulassung ist die Verwendbarkeit des Zulassungsgegenstandes im Sinne der Landesbauordnungen nachgewiesen.
- Die allgemeine bauaufsichtliche Zulassung ersetzt nicht die für die Durchführung von Bauvorhaben gesetzlich vorgeschriebenen Genehmigungen, Zustimmungen und Bescheinigungen.
- Die allgemeine bauaufsichtliche Zulassung wird unbeschadet der Rechte Dritter, insbesondere privater Schutzrechte, erteilt.
- Hersteller und Vertreiber des Zulassungsgegenstandes haben, unbeschadet weitergehender Regelungen in den "Besonderen Bestimmungen", dem Verwender des Zulassungsgegenstandes Kopien der allgemeinen bauaufsichtlichen Zulassung zur Verfügung zu stellen und darauf hinzuweisen, dass die allgemeine bauaufsichtliche Zulassung an der Verwendungsstelle vorliegen muss. Auf Anforderung sind den beteiligten Behörden ebenfalls Kopien der allgemeinen bauaufsichtlichen Zulassung zur Verfügung zu stellen.
- Die allgemeine bauaufsichtliche Zulassung darf nur vollständig vervielfältigt werden. Eine auszugsweise Veröffentlichung bedarf der Zustimmung des Deutschen Instituts für Bautechnik. Texte und Zeichnungen von Werbeschriften dürfen der allgemeinen bauaufsichtlichen Zulassung nicht widersprechen. Übersetzungen der allgemeinen bauaufsichtlichen Zulassung müssen den Hinweis "Vom Deutschen Institut für Bautechnik nicht geprüfte Übersetzung der deutschen Originalfassung" enthalten.
- Die allgemeine bauaufsichtliche Zulassung wird widerruflich erteilt. Die Bestimmungen der allgemeinen bauaufsichtlichen Zulassung können nachträglich ergänzt und geändert werden, insbesondere, wenn neue technische Erkenntnisse dies erfordern.
- Dieser Bescheid bezieht sich auf die von dem Antragsteller im Zulassungsverfahren zum Zulassungsgegenstand gemachten Angaben und vorgelegten Dokumente. Eine Änderung dieser Zulassungsgrundlagen wird von diesem Bescheid nicht erfasst und ist dem Deutschen Institut für Bautechnik unverzüglich offenzulegen.

Seite 3 von 18 | 27. Oktober 2017

II BESONDERE BESTIMMUNGEN

1 Zulassungsgegenstand und Anwendungsbereich

1.1 Zulassungsgegenstand

Der Zulassungsgegenstand sind Spannglieder für externe Vorspannung aus 2 bis 16 Spannstahllitzen, die aus folgenden Teilen bestehen:

- Zugglieder: bauaufsichtlich zugelassene Spannstahllitzen St 1570/1770, Nenndurchmesser 15,7 mm (0,62" bzw. 150 mm²) mit im Herstellwerk des Antragsstellers aufgebrachten Korrosionsschutzsystems, bestehend aus Korrosionsschutzmasse und Schutzhüllen
- Spann- und Festanker für Spannglieder aus 2, 4, 6, 8, 12 und 16 Spannstahllitzen
- feste Kopplungen für Spannglieder aus 4, 8, 12 und 16 Spannstahllitzen
- Umlenksattel aus Kunststoff oder Stahl
- Korrosionsschutzsystem
- Bewehrung im Verankerungsbereich

Die Spannstahllitzen werden im Werk mit einem Korrosionsschutzsystem bestehend aus Korrosionsschutzmasse und einer (Schutzhülle Typ 1A oder 1B) oder zwei (Schutzhülle Typ 1A + Schutzhülle 2) aufextrudierten PE-Schutzhülle(n) versehen.

Durch die Schutzhülle Typ 1A oder Typ 1B werden zwei oder vier Litzen zu einfach ummantelten Bändern, durch die Schutzhülle 2 zu doppelt ummantelten Bändern zusammengefasst.

Die Spannglieder können aus einem oder bis zu vier einfach oder doppelt ummantelten Bänder bestehen.

Die Verankerung der Spannstahllitzen in den Ankerkörpern oder Koppelankerkörpern erfolgt durch Ringkeile.

1.2 Anwendungsbereich

Die Spannglieder dürfen zur externen Vorspannung ohne Verbund von Spannbetonbauteilen aus Normalbeton verwendet werden, die nach DIN EN 1992-1-1:2011-01 in Verbindung mit DIN EN 1992-1-1/NA:2013-04 oder DIN EN 1992-2:2010-12 in Verbindung mit DIN EN 1992-2/NA:2013-04 bemessen werden.

Die Spannglieder müssen außerhalb des Betonquerschnitts aber innerhalb der Bauteilhöhe liegen. Die Temperatur im Bereich der Spannglieder darf im Allgemeinen 40°C nicht überschreiten.

Eine Verwendung dieser Spannglieder zur externen Vorspannung ohne Verbund von Bauteilen, die nach DIN EN 1993-1-1:2010-12 in Verbindung mit DIN EN 1993-1-1/NA:2010-12 und DIN EN 1993-1-8:2010-12 in Verbindung mit DIN EN 1993-1-8/NA:2010-12 bemessen werden, ist ebenfalls möglich, sofern die Bedingungen dieser allgemeinen bauaufsichtlichen Zulassung eingehalten werden.

Für die Verwendung der Spannglieder mit nur einer PE-Schutzhülle (Typ 1A oder Typ 1B) gelten spezielle Anwendungsregeln, die in einer separaten Anwendungszulassung geregelt sind.

Seite 4 von 18 | 27. Oktober 2017

2 Bestimmungen für das Bauprodukt

2.1 Eigenschaften und Zusammensetzung

2.1.1 Allgemeines

Es sind Zubehörteile entsprechend den Anlagen und den Technischen Lieferbedingungen, in denen Abmessungen, Material und Werkstoffkennwerte der Zubehörteile mit den zulässigen Toleranzen und die Materialien des Korrosionsschutzes angegeben sind, zu verwenden. Die Technischen Lieferbedingungen sind beim Deutschen Institut für Bautechnik, der Zertifizierungsstelle und der Überwachungsstelle hinterlegt. Änderungen am Spannverfahren bedürfen grundsätzlich der Zustimmung des Deutschen Instituts für Bautechnik.

2.1.2 Spannstahl und Bänder

Es dürfen nur 7-drähtige Spannstahllitzen St 1570/1770 verwendet werden, die mit den folgenden Abmessungen allgemein bauaufsichtlich zugelassen sind:

Spannstahllitze Ø 15,7 mm:

Litze:

Nenndurchmesser $d_P \approx 3 d_A =$

15,7 mm bzw. 0,62"

Nennquerschnitt

150 mm²

Einzeldrähte:

Außendrahtdurchmesser da

Kerndrahtdurchmesser d_K

1,03 d_A

Es dürfen nur Spannstahllitzen mit sehr niedriger Relaxation verwendet werden.

Die Spannstahllitzen sind im Herstellwerk mit dem Korrosionsschutzsystem, bestehend aus der Korrosionsschutzmasse und einer oder zwei aufextrudierten Schutzhüllen, Schutzhülle Typ 1A oder Typ 1B oder Schutzhülle Typ 1A + Schutzhülle 2) aus PE zu versehen. Die Schutzhülle Typ 1A hat eine minimale Wandstärke von 1,8 mm, die Schutzhülle Typ 1B eine minimale Wandstärke von 2,5 mm. Die Schutzhülle 2 hat eine minimale Wandstärke von 3 mm (Anlage 9, Abschnitt 2). Die von der Korrosionsschutzmasse und dem Material der Schutzhüllen / Schutzhülle zu erfüllenden Anforderungen, sind in den unter 2.1.1 genannten Technischen Lieferbedingungen enthalten.

Wird auf die Spannstahllitzen die Schutzhülle 2 aufgebracht, so können hierfür nur Spannstahllitzen verwendet werden, die mit Schutzhülle Typ 1A ummantelt sind.

2.1.3 Ringkeile

Es dürfen nur die auf Anlage 10 angegebenen Ringkeile entsprechend den hinterlegten Unterlagen verwendet werden.

2.1.4 Ankerplatten, Ankerkörper, Koppelankerkörper und Koppelhülsen

Für die Verankerung der Spannstahllitzen im Beton sind Ankerplatten und Ankerkörper mit Abmessungen nach Anlage 3 zu verwenden.

Für aufgesetzte Verankerungen auf Beton- oder Stahlkonstruktionen sind Ankerkörper mit Aussparungsöffnungen nach Anlage 8 oder Ankerkörper nach Anlage 3 mit Aussparungsöffnungen nach Anlage 2 zu verwenden.

Für feste Kopplungen sind die Koppelankerkörper und Koppelhülsen nach Anlage 5 entsprechend der hinterlegten Unterlagen zu verwenden.

Die Bohrlochausgänge der Ankerkörper und Koppelankerkörper müssen entgratet sein. Die konischen Bohrungen der Ankerkörper und Koppelankerkörper müssen sauber und rostfrei und mit einer Korrosionsschutzmasse versehen sein.

2.1.5 Wendel und Bügelbewehrung

Die in den Anlagen 3 angegebenen Abmessungen und Stahlsorten der Wendel und Bügelbewehrung im Verankerungsbereich sind einzuhalten. Die zentrische Lage der Wendel ist entsprechend Abschnitt 4.2.3 zu sichern.

Allgemeine bauaufsichtliche Zulassung

Nr. Z-13.3-78

Seite 5 von 18 | 27. Oktober 2017

Jedes Wendelende ist zu einem geschlossenen Ring zu verschweißen. Die Verschweißung der Endgänge der Wendel kann an den inneren Enden entfallen, wenn die Wendel dafür um 1½ zusätzliche Gänge verlängert wird.

2.1.6 Verankerungen

Die Ausbildung der Verankerungen ist auf den Anlagen 3 bis 5 und 8 dargestellt. Die Trompete am Spann- und Festanker ist so auszubilden, dass der Umlenkwinkel der Spannstahllitzen ab Ankerkörper maximal 1,5° beträgt. Ansonsten sind die Spannglieder im Verankerungsbereich knickfrei zu führen.

An den Enden der Verankerungen (Austritt aus den Querträgern) sind zusätzliche Umlenkungen α_{Reserve} von mindestens 3° vorzusehen (siehe Anlagen 3 bis 5 und 8), die knickfreie Abweichungen der Spanngliedachse von der planmäßigen Lage bis zu diesem Winkel ermöglichen. Auch für diese zusätzlichen Umlenkungen sind die Mindestradien nach Anlage 9, Abschnitt 4.2 einzuhalten.

2.1.7 Korrosionsschutz im Bereich der Verankerungen

An den Endverankerungen und Kopplungen ist der nicht durch PE-Schutzhüllen (Schutzhülle 1) geschützte Bereich der Spannstahllitzen durch Übergangsröhrchen, Schutzkappe, Hüllkasten usw. vollständig zu umhüllen.

Im Endzustand muss die Einbindelänge von Schutzhülle 1 (Monolitzenmantel) in die Übergangsröhrchen ≥ 100 mm und von Schutzhülle 2 (äußere Bandhülle) in die Trompeten ≥ 500 mm sein (siehe Anlagen 3 bis 6 und 8).

Die Abdichtungen sind sorgfältig auszuführen. Die Hohlräume müssen vollständig mit den auf Anlage 10 angegebenen Korrosionsschutzmassen verfüllt sein.

2.1.8 Umlenksättel

Die Umlenksättel sind wie auf Anlage 7 angegeben auszuführen. Im Umlenkbereich darf an keiner Stelle der in Abhängigkeit von den verwendeten Bändern angegebene minimale Umlenkradius unterschritten werden. Der minimale Umlenkradius ist auch im Bereich aller vorzusehenden trompetenartigen Aufweitungen einzuhalten. Liegen die Bänder nicht seitlich an, so werden die Bandlagen mittels seitlich eingebauter Futterplatten gestützt. Dabei ist auf jeder Seite auf jeweils mindestens 300 mm Länge auszufüttern.

An den Enden der Umlenkstellen (Austritt aus den Querträgern) sind zusätzliche Umlenkungen α_{Reserve} von mindestens 3° vorzusehen (siehe Anlage 7), die knickfreie Abweichungen der Spanngliedachse von der planmäßigen Lage bis zu diesem Winkel ermöglichen. Auch für diese zusätzlichen Umlenkungen sind die Mindestradien nach Anlage 9, Abschnitt 4.2 einzuhalten.

2.1.9 Kopplungen

Die Kopplungen sind wie auf Anlage 5 angegeben auszuführen. Sie sind nur in planmäßig gerade Spanngliedabschnitte einzubauen. Die Trompeten des 2. Bauabschnitts sind aus Stahl auszuführen.

2.1.10 Korrosionsschutz der freiliegenden Stahlteile

Die nicht ausreichend durch Betonüberdeckung (mindestens 5 cm) oder Korrosionsschutzmassen geschützten Flächen aller stählernen Teile sind durch eines der folgenden Schutzsysteme nach DIN EN ISO 12944-5 gegen Korrosion zu schützen:

a) ohne metallischen Überzug:

A5M.02, A5M.04, A5M.06, A5M.07

b) mit Verzinkung:

A7.10, A7.11, A7.12, A7.13

Die Oberflächenvorbereitung erfolgt nach DIN EN ISO 12944-4. Bei der Ausführung der Beschichtungsarbeiten ist DIN EN ISO 12944-7 zu beachten.

Allgemeine bauaufsichtliche Zulassung

Nr. Z-13.3-78

Seite 6 von 18 | 27. Oktober 2017

2.1.11 Beschreibung des Spannverfahrens und Zeichnungen

Der Aufbau der Spannglieder, die Ausbildung der Verankerungen, der Kopplungen, der Umlenksättel, die Verankerungsteile und der Korrosionsschutz müssen der beiliegenden Beschreibung und den hinterlegten Unterlagen (einschließlich Werkstattzeichnungen) entsprechen. Die darin angegebenen Maße und Materialkennwerte sowie der darin beschriebene Herstellungsvorgang der Spannglieder und des Korrosionsschutzes sind einzuhalten.

2.2 Herstellung, Transport, Lagerung und Kennzeichnung

2.2.1 Allgemeines

Auf eine sorgfältige Behandlung der umhüllten Spannstahllitzen bei der Herstellung von Fertigspanngliedern und der Zubehörteile bei Transport, Lagerung und Einbau ist zu achten.

Fertigspannglieder müssen in einer geschlossenen Halle hergestellt werden. Die fertigen Spannglieder dürfen nur als abgedichtete Bänder das Herstellwerk verlassen. Die Spannglieder sind durch den Bauleiter des Unternehmens oder dessen fachkundigen Vertreter bei Anlieferung auf Transportschäden (sichtbare Schäden an Hüllrohren und Ankern) zu überprüfen.

Siehe auch DIN EN 1992-1-1 in Verbindung mit DIN EN 1992-1-1/NA.

2.2.2 Krümmungsradius der Spannglieder beim Transport

Der Krümmungsradius der Spannglieder darf 0,55 m nicht unterschreiten. Außerdem sind die Angaben der Zulassungen der verwendeten Spannstahllitzen zu beachten.

2.2.3 Kennzeichnung

Jeder Lieferung der unter Abschnitt 2.3.2 angegebenen Zubehörteile ist ein Lieferschein mitzugeben, aus dem u.a. hervorgeht, für welche Spanngliedtypen die Teile bestimmt sind und von welchem Werk sie hergestellt wurden. Mit einem Lieferschein dürfen Zubehörteile nur für eine einzige, im Lieferschein zu benennende Spanngliedtype geliefert werden.

Bei der Auslieferung von Fertigspanngliedern sind folgende Unterlagen beizufügen:

- Lieferschein mit Angabe von Bauvorhaben, Spanngliedgröße, Positionsnummer der Spannglieder, Fertigungs- und Auslieferungsdatum und der Bestätigung, dass die Spannglieder güteüberwacht sind. Der Lieferschein muss auch die Angaben der Anhängeschilder der jeweils verwendeten Spannstähle enthalten.
- bei Verwendung von Restmengen oder Verschnitt die Angabe der Herkunft.
- Lieferzeugnisse für den Spannstahl und Lieferscheine für die Zubehörteile mit Angabe der hierfür fremdüberwachenden Stelle.

Der Lieferschein des Bauprodukts muss vom Hersteller mit dem Übereinstimmungszeichen (Ü-Zeichen) nach den Übereinstimmungszeichen-Verordnungen der Länder gekennzeichnet werden. Die Kennzeichnung darf nur erfolgen, wenn die Voraussetzungen nach Abschnitt 2.3 erfüllt sind.

Der Hersteller ist dafür verantwortlich, dass alle erforderlichen Komponenten des Spannverfahrens in Übereinstimmung mit der geltenden Zulassung auf die Baustelle geliefert und sachgemäß übergeben werden. Dies gilt auch für die zur Ausführung benötigte Spezialausrüstung (Pressen, Einpressgeräte, usw.), sofern diese nicht durch die ausführende Spezialfirma selbst gestellt wird.

Seite 7 von 18 | 27. Oktober 2017

2.3 Übereinstimmungsnachweis

2.3.1 Allgemeines

Die Bestätigung der Übereinstimmung des Bauprodukts (Zubehörteile, Bänder und Fertigspannglieder) mit den Bestimmungen dieser allgemeinen bauaufsichtlichen Zulassung und den Technischen Lieferbedingungen muss für jedes Herstellwerk mit einem Übereinstimmungszertifikat auf der Grundlage einer werkseigenen Produktionskontrolle und einer regelmäßigen Fremdüberwachung einschließlich einer Erstprüfung des Bauprodukts nach Maßgabe der folgenden Bestimmungen erfolgen.

Für die Erteilung des Übereinstimmungszertifikats und für die Fremdüberwachung einschließlich der dabei durchzuführenden Produktprüfungen hat der Hersteller des Bauprodukts eine hierfür anerkannte Zertifizierungsstelle sowie eine hierfür anerkannte Überwachungsstelle einzuschalten.

Die Erklärung, dass ein Übereinstimmungszertifikat erteilt ist, hat der Hersteller durch Kennzeichnung der Bauprodukte mit dem Übereinstimmungszeichen (Ü-Zeichen) unter Hinweis auf den Verwendungszweck abzugeben.

Dem Deutschen Institut für Bautechnik ist von der Zertifizierungsstelle eine Kopie des von ihr erteilten Übereinstimmungszertifikats zur Kenntnis zu geben.

Beim Deutschen Institut für Bautechnik, der Zertifizierungsstelle und der Überwachungsstelle sind die Technischen Lieferbedingungen, in denen Abmessungen, die Materialien und Werkstoffkennwerte der Zubehörteile mit den zulässigen Toleranzen und die Materialien des Korrosionsschutzes angegeben sind, hinterlegt.

2.3.2 Werkseigene Produktionskontrolle

2.3.2.1 Allgemeines

In jedem Herstellwerk ist eine werkseigene Produktionskontrolle einzurichten und durchzuführen. Unter werkseigener Produktionskontrolle wird die vom Hersteller vorzunehmende kontinuierliche Überwachung der Produktion verstanden, mit der dieser sicherstellt, dass die von ihm hergestellten Bauprodukte den Bestimmungen dieser allgemeinen bauaufsichtlichen Zulassung entsprechen.

Die werkseigene Produktionskontrolle muss mindestens die in den folgenden Abschnitten 2.3.2.2 bis 2.3.2.8 aufgeführten Maßnahmen einschließen.

Die Ergebnisse der werkseigenen Produktionskontrolle sind aufzuzeichnen und auszuwerten. Die Aufzeichnungen müssen mindestens folgende Angaben enthalten:

- Bezeichnung des Bauprodukts bzw. des Ausgangsmaterials und der Bestandteile
- Art der Kontrolle oder Prüfung
- Datum der Herstellung und der Prüfung des Bauprodukts bzw. des Ausgangsmaterials oder der Bestandteile
- Ergebnis der Kontrollen und Prüfungen und, soweit zutreffend, Vergleich mit den Anforderungen
- Unterschrift des für die werkseigene Produktionskontrolle Verantwortlichen

Die Aufzeichnungen sind mindestens fünf Jahre aufzubewahren und der für die Fremdüberwachung eingeschalteten Überwachungsstelle vorzulegen. Sie sind dem Deutschen Institut für Bautechnik und der zuständigen obersten Bauaufsichtsbehörde auf Verlangen vorzulegen.

Bei ungenügendem Prüfergebnis sind vom Hersteller unverzüglich die erforderlichen Maßnahmen zur Abstellung des Mangels zu treffen. Bauprodukte, die den Anforderungen nicht entsprechen, sind so zu handhaben, dass Verwechslungen mit übereinstimmenden ausgeschlossen werden. Nach Abstellung des Mangels ist - soweit technisch möglich und zum Nachweis der Mängelbeseitigung erforderlich - die betreffende Prüfung unverzüglich zu wiederholen.

Allgemeine bauaufsichtliche Zulassung

Nr. Z-13.3-78

Seite 8 von 18 | 27. Oktober 2017

Der technische Bereich des Herstellers muss über einen Ingenieur mit mindestens fünf Jahren Berufserfahrung im Spannbetonbau verfügen. Maßgebende technische Fachkräfte, die mit Arbeiten an dem Spannverfahren betraut sind, sollten mindestens über drei Jahre Berufserfahrung im Spannbetonbau verfügen.

Der Hersteller muss folgende Unterlagen in jeweils aktueller Fassung bereithalten:

Dokumentation über die betrieblichen Voraussetzungen, aus der mindestens folgende Punkte hervorgehen:

- Aufbau des technischen Bereichs und Verantwortlichkeiten der Mitarbeiter,
- Nachweis der Qualifikation des eingesetzten Personals,
- Nachweis der regelmäßig durchgeführten Schulungen,
- Ansprechpartner in Bezug auf das Spannverfahren.
- Kontroll- und Ablagesystem.

Allgemeine Verfahrensbeschreibung für die ausführende Spezialfirma, die mindestens folgendes umfasst:

- Aktuelle Fassung der Zulassung und Beschreibung des Spannverfahrens,
- Vorgaben für Lagerung, Transport und Montage,
- Arbeitsanweisungen für Montage- und Vorspannprozesse einschließlich Maßnahmen zum Korrosionsschutz (auch temporär),
- Angaben zum Schweißen im Bereich der Spannglieder,
- Zusammenstellung der zu beachtenden Sicherheits- und Arbeitsschutzaspekte,
- Allgemeiner Qualitätssicherungsplan¹
- Schulungsprogramm für das mit Vorspannarbeiten betraute Baustellenpersonal².

Der Hersteller trägt die Verantwortung für die Autorisierung der ausführenden Spezialfirmen.

Kann der Hersteller die an ihn gerichteten Anforderungen nicht erfüllen, gelten sie für den Antragsteller. Antragsteller und Hersteller dürfen auch eine Aufgabenteilung vereinbaren.

2.3.2.2 Ringkeile

Der Nachweis der Material- und Keileigenschaften ist durch Abnahmeprüfzeugnis "3.1" nach DIN EN 10204 zu erbringen.

An mindestens 5 % aller hergestellten Ringkeile sind folgende Prüfungen auszuführen:

- a) Prüfung der Maßhaltigkeit
- b) Prüfung der Oberflächenhärte

An mindestens 0,5 % aller hergestellten Ringkeile sind Einsatzhärtungstiefe und Kernhärte zu prüfen.

Alle Ringkeile sind mit Hilfe einer Ja/Nein-Prüfung nach Augenschein auf Beschaffenheit der Zähne, der Konusoberfläche und der übrigen Flächen zu prüfen (hierüber sind keine Aufzeichnungen erforderlich).

2.3.2.3 Ankerkörper, Koppelankerkörper und Koppelhülsen

Der Nachweis der Materialeigenschaften ist durch Abnahmeprüfzeugnis "3.1" nach DIN EN 10204 zu erbringen.

An mindestens $5\,\%$ der Ankerkörper, Koppelankerkörper und Koppelhülsen sind die Abmessungen zu überprüfen.

Vorgaben hierzu siehe auch: ETAG 013 Guideline for European Technical Approval of post-tensioning kits for prestressing of structures, Anhang D.3, EOTA Brüssel Juni 2002

Siehe auch: CEN Workshop Agreement (CWA): Requirements for the installation of post-tensioning kits for prestressing of structures and qualification of the specialist company and its personnel, Anhang B, Brüssel 2002

Seite 9 von 18 | 27. Oktober 2017

Alle konischen Bohrungen der Ankerkörper und Koppelankerkörper zur Aufnahme der Ringkeile sind mit Hilfe einer Ja/Nein-Prüfung bezüglich Winkel, Durchmesser und Oberflächengüte zu überprüfen.

Die Abmessungen der Gewinde aller Koppelankerkörper und Koppelhülsen sind in einer Ja/Nein-Prüfung zu überprüfen.

Darüber hinaus ist jeder Ankerkörper, Koppelankerkörper und Koppelhülsen mit Hilfe einer Ja/Nein-Prüfung auf Abmessungen und grobe Fehler nach Augenschein zu überprüfen (hierüber sind keine Aufzeichnungen erforderlich).

2.3.2.4 Ankerplatten

Der Nachweis der Materialeigenschaften ist durch Werkszeugnis "2.2" nach DIN EN 10204 zu erbringen.

An mindestens 3% der Ankerplatten sind die Abmessungen zu prüfen.

Darüber hinaus ist jede Ankerplatte mit Hilfe einer Ja/Nein-Prüfung auf Abmessungen und grobe Fehler nach Augenschein zu überprüfen (hierüber sind keine Aufzeichnungen erforderlich).

- 2.3.2.5 Korrosionsschutz der Spannstahllitzen, Ausgangsmaterialien
 - Der Nachweis, dass die Ausgangsmaterialien des Korrosionsschutzes (PE-Granulat, Korrosionsschutzmasse) den Technischen Lieferbedingungen entsprechen, ist durch Abnahmeprüfzeugnis "3.1" nach DIN EN 10204 zu erbringen.
- 2.3.2.6 Korrosionsschutz der Spannstahllitzen, Endprodukt (Spezifikationen nach den Technischen Lieferbedingungen)
- 2.3.2.6.1 Korrosionsschutzmäntel (PE-Schutzhüllen Typ 1A, Typ 1B und 2)

 Die Prüfungen sind nach dem beim DIBt hinterlegten Prüfplan vorzunehmen.
- 2.3.2.6.2 Korrosionsschutzmasse
 - Die Prüfungen sind nach dem beim DIBt hinterlegten Prüfplan vorzunehmen.
- 2.3.2.7 Korrosionsschutzmassen und Korrosionsschutzbinden für die Verankerungsbereiche Der Nachweis der Materialeigenschaften der Korrosionsschutzmassen und der Korrosionsschutzbinden für die Verankerungsbereiche (Endverankerungen und Kopplungen) ist durch Werksbescheinigung "2.1" nach DIN EN 10 204 zu erbringen.
- 2.3.2.8 Abmessungen der Zubehörteile (Rohre, Kappen usw.) des Korrosionsschutzsystems Die Abmessungen der Zubehörteile sind stichprobenweise je Lieferlos zu überprüfen.

2.3.3 Fremdüberwachung

In jedem Herstellwerk ist die werkseigene Produktionskontrolle durch eine Fremdüberwachung regelmäßig zu überprüfen, mindestens jedoch halbjährlich.

Im Rahmen der Fremdüberwachung ist eine Erstprüfung des Bauprodukts durchzuführen und sind auch Proben für Stichprobenprüfungen zu entnehmen. Die Probenahme und Prüfungen obliegen jeweils der anerkannten Überwachungsstelle.

Im Rahmen der Fremdüberwachung sind auch die Prüfungen nach dem beim DIBt hinterlegten Prüfplan vorzunehmen.

Die Messungen der Mindestwanddicken der PE-Schutzhüllen Typ 1A, Typ 1B und 2 sind nach dem beim DIBt hinterlegten Prüfplan, Abschnitt 5 durchzuführen.

Die Ergebnisse der Zertifizierung und Fremdüberwachung sind mindestens fünf Jahre aufzubewahren. Sie sind von der Zertifizierungsstelle bzw. der Überwachungsstelle, dem Deutschen Institut für Bautechnik und der zuständigen obersten Bauaufsichtsbehörde auf Verlangen vorzulegen.

Seite 10 von 18 | 27 Oktober 2017

3 Bestimmungen für Entwurf und Bemessung

3.1 Allgemeines

3.1.1 Einbetonierte Verankerungen

Für Entwurf und Bemessung von mit diesen Spanngliedern vorgespannten Bauteilen gilt DIN EN 1992-1-1 in Verbindung mit DIN EN 1992-1-1/NA oder DIN EN 1992-2 in Verbindung mit DIN EN 1992-2/NA. Die Begrenzung der planmäßigen Vorspannkraft nach DIN EN 1992-1-1/NA, NCI Zu 5.10.2.1 ist zu beachten.

3.1.2 Auf Beton- und Stahlkonstruktionen aufgesetzte Verankerungen

Für den Entwurf und die Bemessung der Ankerplatten und der zur Halterung und Auflagerung der Verankerung der Spannglieder dienenden Stahlbauteile gilt DIN EN 1993-1-1 in Verbindung mit DIN EN 1993-1-1/NA und DIN EN 1993-1-8 in Verbindung mit DIN EN 1993-1-8/NA. Die Bauteile sind für die 1,1 fache Nennbruchkraft des Spanngliedes ($F_d = 1,1\ F_{pk}$) zu bemessen. Spannungen und Verformungen in den tragenden Stahlbauteilen müssen bei der maximal auftretenden Vorspannkraft innerhalb der jeweils vorgegebenen zulässigen Grenzwerte liegen.

Für den Entwurf und die Bemessung der lastabtragenden Betonbauteile gilt DIN EN 1992-1-1 in Verbindung mit DIN EN 1992-1-1/NA oder DIN EN 1992-2 in Verbindung mit DIN EN 1992-2/NA. Die Bauteile sind für die 1,1-fache Nennbruchkraft des Spanngliedes ($F_d = 1,1$ F_{pk}) zu bemessen.

3.2 Zulässige Vorspannkräfte

Am Spannende darf abweichend von DIN EN 1992-1-1, Abschnitt 5.10.2.1(1), Gleichung (5.41) die aufgebrachte Kraft P_{max} die in der Tabelle 1 aufgeführte Kraft $P_{max} = 0.75 \; A_p \; f_{pk}$ nicht überschreiten. Ein Überspannen nach DIN EN 1992-1-1, Abschnitt 5.10.2.1(2) ist auszuschließen. Der Mittelwert der Vorspannkraft $P_{m0}(x)$ unmittelbar nach dem Absetzen der Pressenkraft auf die Verankerung darf abweichend von DIN EN 1992-1-1, Abschnitt 5.10.3(2), Gleichung (5.43) die in Tabelle 1 aufgeführte Kraft $P_{m0}(x) = 0.70 \; A_p \; f_{pk}$ an keiner Stelle überschreiten.

Tabelle 1: Zulässige Vorspannkräfte

Spannglied	Anzahl Litzen	Vorspannkraft St 1570/1770 f _{p0,1k} = 1500 N/mm²		
		P _{m0(x)} [kN]	P _{max} [kN]	
1x02-150	2	372	398	
2x02-150 1x04-150	4	743	797	
3x02-150	6	1115	1195	
2x04-150 4x02-150	8	1487	1593	
3x04-150	12	2230	2390	
4x04-150	16	2974	3186	

Abweichend von DIN EN 1992-1-1/NA, NCI Zu 7.2 (NA.6) darf der Mittelwert der Spannstahlspannung unter der seltenen Einwirkungskombination den Wert 0,75 f_{pk} nicht überschreiten.

Seite 11 von 18 | 27. Oktober 2017

3.3 Dehnungsbehinderung des Spanngliedes

Die Spannkraftverluste im Spannglied können in der Regel in der statischen Berechnung mit den auf Anlage 9, Abschnitt 4.3, angegebenen Reibungsbeiwerten ermittelt werden. Der ungewollte Umlenkwinkel darf mit k = 0 angesetzt werden.

3.4 Krümmungsradius der Spannglieder

Die kleinsten zulässigen Krümmungsradien sind Anlage 7 und Anlage 9, Abschnitt 4.2 zu entnehmen.

Es ist zu beachten, dass die Bänder sich aufgrund ihrer Geometrie anders bei der Biegung um die x-Achse (um die breite Seite, siehe Anlage 7) als bei der Biegung um die y-Achse (um die schmale Seite, siehe Anlage 7) verhalten. Bei Umlenkung um die schmale Seite der Bänder (um die y-Achse) darf der Umlenkradius den Wert von 10 m nicht unterschreiten unabhängig davon, wie groß der Umlenkradius um die breite Seite ist. Anlage 9, Abschnitt 4.2 ist zu beachten.

Ein Nachweis der Spannstahlrandspannungen in Krümmungen braucht bei Einhaltung dieser Radien nicht geführt zu werden.

Die Aufnahme von Umlenkkräften durch das Bauwerk ist statisch nachzuweisen.

3.5 Betonfestigkeit

Zum Zeitpunkt der Eintragung der vollen Vorspannkraft muss der Normalbeton im Bereich der Verankerung (Spann- und Festanker sowie Kopplung) eine Mindestfestigkeit f_{cmj,cube} bzw. f_{cmj,cyl} entsprechend Tabelle 2 und der Anlage 3 aufweisen. Die Festigkeit ist durch mindestens drei Probekörper (Würfel mit 150 mm Kantenlänge oder Prüfzylinder), die unter den gleichen Bedingungen wie das vorzuspannende Bauteil zu lagern sind, als Mittelwert der Druckfestigkeit nachzuweisen, wobei die drei Einzelwerte um höchstens 5 % voneinander abweichen dürfen.

Sofern nicht genauer nachgewiesen, darf die charakteristische Festigkeit des Betons zum Zeitpunkt t_j der Eintragung der Vorspannkraft aus den Werten der Spalte 2 von Tabelle 2 wie folgt berechnet werden:

$$f_{ck,j} = f_{cmj,cyl} - 8$$

Tabelle 2: Prüfkörperfestigkeit f

f _{cmj,cube} [N/mm²]	f _{cmj,cyl} [N/mm²]
34	27
44	36

Für ein Teilvorspannen mit 30 % der vollen Vorspannkraft beträgt der Mindestwert der nachzuweisenden Betondruckfestigkeit 0,5 f_{cmj,cube} bzw. 0,5 f_{cmj,cyl}; Zwischenwerte dürfen linear interpoliert werden.

3.6 Abstand der Spanngliedverankerungen, Betondeckung

Die auf Anlage 3 angegebenen minimalen Abstände der Spanngliedverankerungen (Endverankerungen und Kopplungen – Koppelankerkörper A) dürfen nicht unterschritten werden. Die Abstände gelten auch dann, wenn kleinere Vorspannkräfte als nach Abschnitt 3.2 eingetragen werden.

Seite 12 von 18 | 27. Oktober 2017

Alle Achs- und Randabstände sind nur im Hinblick auf die statischen Erfordernisse festgelegt worden; daher sind zusätzlich die in anderen Normen und Richtlinien - insbesondere in DIN EN 1992-1-1 in Verbindung mit DIN EN 1992-1-1/NA oder DIN EN 1992-2 in Verbindung mit DIN EN 1992-2/NA - angegebenen Betondeckungen der Betonstahlbewehrung bzw. der stählernen Verankerungsteile zu beachten.

3.7 Bewehrung im Verankerungsbereich einbetonierter Verankerungen und in Bereichen von Umlenksätteln

Die Eignung der einbetonierten Verankerung nach Anlage 3 für die Überleitung der Spannkräfte auf den Bauwerkbeton ist nachgewiesen.

Die Aufnahme der im Bauwerkbeton im Bereich der Verankerungen außerhalb der Wendel auftretenden Kräfte ist nachzuweisen. Hierbei sind insbesondere die auftretenden Spaltzugkräfte durch geeignete Querbewehrung aufzunehmen (in den Anlagen nicht dargestellt).

Die in Anlage 3 angegebenen Stahlsorten und Abmessungen der Wendel und Zusatzbewehrung (Bügel) sind einzuhalten. Die in der Anlage 3 angegebene Zusatzbewehrung darf nicht auf eine statisch erforderliche Bewehrung angerechnet werden. Über die statisch erforderliche Bewehrung hinaus in entsprechender Lage vorhandene Bewehrung darf jedoch auf die Zusatzbewehrung angerechnet werden.

Die Zusatzbewehrung besteht aus geschlossenen Bügeln mit verschweißten Bügelschlössern oder einer gleichwertigen Bewehrung (Steckbügel, Bügel nach DIN EN 1992-1-1/NA, Bild NA.8.5 e) oder g) oder nach DIN EN 1992-1-1 in Verbindung mit DIN EN 1992-1-1/NA, Abschnitt 8.4 verankerte Bewehrungsstäbe). Die Bügelschlösser sind versetzt anzuordnen.

Auch im Verankerungsbereich sind lotrecht geführte Rüttelgassen vorzusehen, damit der Beton einwandfrei verdichtet werden kann.

An den Umlenksätteln (siehe Anlage 7) ist die Aufnahme der Umlenkkräfte durch das Bauteil statisch nachzuweisen. Außerdem ist die Aufnahme der Spreizkräfte im Bereich des Trompetenauslaufs nachzuweisen.

3.8 Aufgesetzte Verankerung

3.8.1 Auf Beton aufgesetzte Verankerung

Die aufgesetzte Verankerung auf Betonbauteile erfolgt mit Ankerkörpern nach Anlage 8 oder Anlage 3. Die Überleitung der Spannkräfte auf den Bauwerkbeton ist rechnerisch nachzuweisen.

Die Ankerplatten aus Stahl und das Betonbauteil sind dafür zu bemessen, dass die im Bruchzustand des Spanngliedes auftretenden Lasten mit 1,1-facher Sicherheit (F_d = 1,1 F_{pk}) übertragen werden. Dabei ist rechnerisch nachzuweisen, dass die Beanspruchung in den Kontaktflächen zwischen Ankerkörper und Ankerplatte sowie Ankerplatte und Beton gleichmäßig ist. Die Kontaktfläche muss der Ankerkörperfläche unter Abzug der Fläche der Durchgangsgasse entsprechen.

Die Aufnahme und Weiterleitung der aus Umlenkungen entstehenden Kräfte im Bauwerkbeton sind nachzuweisen. Hierbei sind insbesondere die auftretenden Spaltzugkräfte durch geeignete Querbewehrung aufzunehmen (in Anlage 8 nicht dargestellt).

Die Festigkeit des vorhandenen Betons ist erforderlichenfalls durch Bauwerksuntersuchungen nachzuweisen.

Die zulässigen Vorspannkräfte sind Abschnitt 3.2, Tabelle 1 zu entnehmen.

3.8.2 Auf Stahlkonstruktionen aufgesetzte Verankerung

Die aufgesetzte Verankerung auf Stahlkonstruktionen erfolgt mit Ankerkörpern nach den Anlagen 8 oder 3.

Allgemeine bauaufsichtliche Zulassung

Nr. Z-13.3-78

Seite 13 von 18 | 27. Oktober 2017

Die Stahlkonstruktion ist dafür zu bemessen, dass die im Bruchzustand des Spanngliedes auftretenden Lasten mit 1,1-facher Sicherheit ($F_d = 1,1\ F_{pk}$) übertragen werden. Dabei ist rechnerisch nachzuweisen, dass die Beanspruchung in der Kontaktfläche zwischen Ankerkörper und Unterkonstruktion gleichmäßig ist. Die Kontaktfläche muss der Ankerkörperfläche unter Abzug der Fläche der Durchgangsgasse entsprechen.

Die Angaben zu den Trompeten in den Anlagen 3 und 8 gelten für diese Verankerung nicht. Die Trompeten - deren Anschluss an die Stahlkonstruktion sowie die Aufnahme und Weiterleitung der Umlenkkräfte - sind statisch nachzuweisen. Dabei sind auch die Festlegungen nach Abschnitt 3.4 zu beachten.

Die zulässigen Vorspannkräfte sind Abschnitt 3.2, Tabelle 1 zu entnehmen.

3.9 Schlupf an den Verankerungen

Der Einfluss des Schlupfes an den Verankerungen (siehe Abschnitt 4.2.7) muss bei der statischen Berechnung bzw. bei der Bestimmung der Spannwege berücksichtigt werden.

3.10 Ermüdungsnachweis der Verankerung

Mit den an den Endverankerungen, den Kopplungen und den Umlenksätteln im Rahmen des Zulassungsverfahrens durchgeführten Ermüdungsversuchen wurde bei der Oberspannung von 0,65 f_{nk} eine Schwingbreite von 35 N/mm² bei 2 • 10⁶ Lastspielen nachgewiesen.

3.11 Durchführungen der Spannglieder durch Bauteile

Bei geraden Durchführungen der Spannglieder durch Bauteile ist durch eine entsprechende Größe der Öffnungen im Bauteil unter Berücksichtigung der Ausführungstoleranzen sicherzustellen, dass ein Anliegen der Spannglieder am Bauteil ausgeschlossen ist.

3.12 Schutz der Spannglieder

Die Spannglieder sind gegen Ausfall infolge äußerer Einwirkungen (z.B. Anprall von Fahrzeugen, erhöhte Temperaturen, erhöhte Temperaturen im Brandfall, Vandalismus) zu schützen. Spannglieder in einem abgeschlossenen Hohlkasten gelten als ausreichend geschützt.

Spannglieder im Innern von Hohlkästen können vor Korrosion als ausreichend geschützt angesehen werden.

Bei Anwendung außerhalb von Hohlkästen, insbesondere bei korrosionsfördernder Umgebung, ist die Anwendbarkeit zu prüfen.

3.13 Längen der Übergangsröhrchen und Einbindelänge der Schutzhüllen 2

Die erforderlichen Längen der Übergangsröhrchen und die erforderliche Einbindelänge von Schutzhülle 2 in das an die Trompete angeschlossene Umlenkstück sind unter Berücksichtigung aller möglichen Einflüsse insbesondere von Temperaturdifferenzen während des Bauzustandes, Bewegungen beim Vorspannen und Bautoleranzen festzulegen, damit die minimalen Einbindelängen beider Schutzhüllen im Endzustand (siehe Abschnitt 2.1.7) sichergestellt sind. Diese Festlegung ist durch den Antragsteller oder in Abstimmung mit ihm zu treffen.

3.14 Kopplung

Die Spannkraft an der Kopplung darf im 2. Bauabschnitt weder im Bau- noch im Endzustand größer als im 1. Bauabschnitt sein. Dies gilt auch für spätere Kontrollen oder Änderungen der Spannkraft.

Die Stahltrompeten des 2. Bauabschnitts und deren Anschlüsse an die Kopplung sind für eine unplanmäßige Winkelabweichung von 0,5° und für die Aufnahme und Weiterleitung der Spreizkräfte zu bemessen.

Seite 14 von 18 | 27. Oktober 2017

4 Bestimmungen für die Ausführung

4.1 Anforderungen und Verantwortlichkeiten

Für die Aufgaben und Verantwortlichkeiten der ausführenden Spezialfirma gelten die "DIBt-Grundsätze für die Anwendung von Spannverfahren"³.

4.2 Ausführung

4.2.1 Allgemeines

Neben den für Spannverfahren relevanten Anforderungen nach DIN EN 13670 in Verbindung mit DIN 1045-3 gelten die "DIBt-Grundsätze für die Anwendung von Spannverfahren"⁴.

Ausführende Spezialfirmen müssen für die Anwendung dieses Spannverfahrens durch den Hersteller auf Grundlage der allgemeinen Verfahrensbeschreibung nach Abschnitt 2.3.2.1 umfassend geschult und autorisiert sein.

4.2.2 Schweißen an den Verankerungen

Das Schweißen an den Verankerungen ist nur an folgenden Teilen zugelassen:

- a) Verschweißung der Endgänge der Wendel zu einem geschlossenen Ring.
- b) Zur Sicherung der zentrischen Lage darf der Endring an die Ankerplatte durch Schweißen angeheftet werden.
- c) Anschweißen des rechteckigen oder quadratischen Rohres zum Anschluss der Trompete an die Ankerplatte.

Nach der Montage der Spannglieder dürfen an den Verankerungen keine Schweißarbeiten mehr vorgenommen werden.

4.2.3 Einbau der Verankerungen, der Wendel- und Zusatzbewehrung und der Spannbänder

Alle Trompeten und Umlenksättel sind sauber und glatt auszuführen und sind so zu befestigen, dass sie beim Betonieren nicht verschoben werden können.

Die Festlegungen nach den Abschnitten 2,1.6 und 2.1.8 sind zu beachten.

Die konischen Bohrungen der Ankerkörper müssen beim Einbau sauber und rostfrei und mit der Korrosionsschutzmasse des Litzenbandes versehen werden. Die zentrische Lage der Wendel und der Zusatzbewehrung zum Spannglied ist durch geeignete Halterungen zu sichern. Die zentrische Lagesicherung der Wendel kann durch Heftschweißen an die Ankerplatte erfolgen bzw. ist durch Halterungen zu sichern, die gegen die Trompete abgestützt sind. Ankerplatten und Ankerkörper müssen senkrecht zur Spanngliedachse liegen.

Die Montage der Spannglieder muss wie in Anlage 9, Abschnitt 5 beschrieben erfolgen. Die Markierung der Schutzhüllen 2 (siehe Anlage 9, Abschnitt 5.2.3) ist dauerhaft in einem zu protokollierenden Abstand aufzubringen, damit jederzeit die erforderlichen Einbindelängen der Schutzhüllen (siehe Abschnitt 2.1.7) kontrolliert werden können. Bei der Kontrolle kann davon ausgegangen werden, dass die Schutzhüllen sich nicht gegenseitig verschieben. Abschließend sind im Endzustand nach dem Vorspannen und der Erhärtung des Einpressmörtels die Einbindelängen zu kontrollieren.

Der Beginn der Montagearbeiten der Verankerungen und Kopplungen (siehe Anlage 9, Abschnitt 5) auf der Baustelle ist der bauüberwachenden Behörde bzw. dem von ihr mit der Bauüberwachung Beauftragten 48 Stunden vorher anzuzeigen.

4.2.4 Verhinderung von Querschwingungen der Spannglieder

Kritische Querschwingungen der Spannglieder infolge Verkehr, Wind oder anderer Ursachen sind durch konstruktive Maßnahmen zu vermeiden.

Veröffentlicht in den DIBt-Mitteilungen 37 (2006), Heft 4.

Seite 15 von 18 | 27. Oktober 2017

Bei Hohlkastenbrücken sind die Spannglieder in Abständen von höchstens 35 m an den Brückenstegen zu befestigen. Außerhalb von Hohlkästen sind kleinere Befestigungsabstände erforderlich. Die Befestigungen sind so auszubilden, dass das Spannglied nicht beschädigt wird und Längsbewegungen des Spanngliedes nicht behindert werden.

4.2.5 Aufbringen der Vorspannung

Die Mindestbetonfestigkeit nach Abschnitt 3.5 ist zu beachten.

Für jeden Umlenksattel und am Spannanker ist der Anteil der beim Vorspannen auftretenden äußere Gleitung (Bewegung der Schutzhülle 2) und innere Gleitung (Differenz des erreichten Spannwegs am Spannanker und der Bewegung der Schutzhülle 2) festzustellen (Markierungen auf der Schutzhülle 2 nach Abschnitt 4.2.3) und in das Spannprotokoll zu übernehmen. Der Anteil an innerer Gleitung (Vorspannen, Nachspannen und evt. Ablassen der Vorspannkraft) darf maximal 25 % des Dehnweges am Spannanker und maximal 20 cm betragen (der kleinere Wert ist maßgebend). Der Anteil der äußeren Gleitung muss mindestens 75 % des Dehnweges am Spannanker betragen. Bei Einhaltung dieser Bedingungen ist eine Beschränkung des Spannweges nicht erforderlich.

Bei wechselseitigem Anliegen der Bänder in den Verankerungs- und Umlenkbereichen (zweisinnig umgelenkte Spannglieder) mit Umlenkradien R_y < 10 m dürfen diese bandweise bis maximal 30 % der vorgesehenen Spannkraft vorgespannt werden.

Bei einseitigem Anliegen der Bänder in den Verankerungs- und Umlenkbereichen (einsinnig umgelenkte Spannglieder) dürfen diese bandweise mit 100 % der vorgesehenen Spannkraft vorgespannt werden. Es ist mit dem Band zu beginnen, bei dem infolge seiner Lage zu den Umlenksätteln die größte Reibung zu überwinden ist. Anschließend werden nacheinander die unmittelbar daneben liegenden Bänder vorgespannt. Verschiebungen der bereits vorgespannten Bänder sind dabei zu verhindern. Dies ist an jedem Umlenksattel durch die aufgebrachten Markierungen (siehe zweiter Absatz und Abschnitt 4.2:3) zu kontrollieren.

Ein Nachspannen der Spannglieder, verbunden mit dem Lösen der Keile und unter Wiederverwendung der Keile, ist zugelassen. Die sich beim vorausgegangenen Anspannen ergebenden Keildruckstellen auf der Litze müssen nach dem Nachspannen bzw. dem Verankern um mindestens 15 mm in den Keilen nach außen verschoben liegen. Bei Spannwegen < 15 mm dürfen daher die Keile nicht mehr gelöst werden. Es sind dann Unterlegscheiben zu verwenden. Vorstehendes gilt auch bei späteren Kontrollen oder Änderungen der Spannkraft. Auf Abschnitt 3.14 wird hingewiesen.

Wie beim Vorspannen sind Markierungen auf der Schutzhülle 2 nach Abschnitt 4.2.3 aufzubringen und ihre Ausgangslage einzumessen. Die Wege der Schutzhülle 2 sind zu messen und mit den rechnerisch ermittelten Wegen der Spannglieder zu vergleichen (jede Umlenkstelle und Spannanker). Der Anteil an innerer Gleitung beim Spannen darf maximal 20 % des Dehnweges und maximal 20 cm betragen (der kleinere Wert ist maßgebend). Dabei müssen die Wege aus dem Vorspannvorgang mitberücksichtigt werden. Wird an einer Stelle des Spanngliedes der maximale Anteil an inneren Gleitung erreicht, darf das Spannglied nicht weiter nachgespannt werden. Wurde der maximale Anteil an innerer Gleitung bereits beim Vorspannen erreicht, so ist das Nachspannen nicht zulässig.

Bei der Anwendung des Spannverfahrens im Brückenbau sind die Verankerungsbereiche nach dem Vorspannen stets mit Einpressmörtel zu verfüllen.

Bei Sonderanwendungen ist das Verfüllen vor dem Vorspannen möglich, wenn sichergestellt ist, dass nur innere Gleitung beim Vorspannen auftritt (der zweite Absatz dieses Abschnitts entfällt dann). Dabei darf erst nach ausreichendem Erhärten des Einpressmörtels vorgespannt werden. Ein Nachspannen ist in diesem Fall nur möglich, wenn beim Vorspannen nicht bereits der gesamte zulässige Anteil an innerer Gleitung (siehe Abschnitt 6) aufgetreten ist.

Seite 16 von 18 | 27. Oktober 2017

Der erforderliche Überstand der Litzen hinter den Verankerungen hängt von der Spannpresse ab, die auf der Baustelle verwendet wird. Alle Litzen eines Spanngliedes müssen gleichzeitig gespannt werden. Das kann durch zentral gesteuerte Einzelpressen oder Bandpressen oder durch Bündelpressen erfolgen. Wenn das gleichzeitige Spannen aller Litzen nicht möglich ist, ist beim bandweisen Vorspannen sicher zu stellen, dass die innere Gleitung nach Anlage 8, Abschnitt 4.2 in keinem der Bänder überschritten wird und die Bänder in ihrer planmäßigen Lage verbleiben.

4.2.6 Unplanmäßiges Anliegen von Spanngliedern und freies Abheben an Austrittspunkten Ein unplanmäßiges Anliegen des Spannglieds am Bauwerk ist unzulässig.

An Austrittspunkten von Verankerungen und Umlenkstellen muss sich das Spannglied frei abheben (es darf kein unplanmäßiges Anliegen (kein Knick) auftreten). Das freie Abheben sollte vor dem Vorspannen nach dem Straffen der Spannglieder an allen Austrittspunkten kontrolliert werden.

4.2.7 Verkeilkraft und Schlupf

Die Keile der Spannanker und der Koppelankerkörper A des ersten Bauabschnitts der Verankerung sind durch eine Spannpresse mit Verkeileinrichtung mit einer Kraft von 25 kN je Litze nach dem Spannen zu verkeilen. An den Spannankern und den Koppelankerkörper A des ersten Bauabschnitts ist mit einem Keilschlupf von 4 mm zu rechnen.

Die Keile der Festanker und die Keile der Koppelankerkörper B des zweiten Bauabschnitts sind mit (A) 1,2 $P_{m0,max}$ ($P_{m0,max}$ nach Abschnitt 3.2) bzw. (B) 1,2 $P_{m0}(x)$ ($P_{m0}(x)$ nach Abschnitt 3.2) vorzuverkeilen oder mit Keilhaltescheiben zu sichern. Bei der Vorverkeilung ist an diesen Verankerungen mit einem Keilschlupf nicht zu rechnen. Bei Anordnung einer Keilhaltescheibe muss bei dem jeweiligen Anker ein zusätzlicher Keilschlupf von 6 mm berücksichtigt werden.

4.2.8 Einpressen

4.2.8.1 Korrosionsschutzmasse

Die Korrosionsschutzmassen sind - falls erforderlich im erwärmten Zustand - in die dafür vorgesehenen Bereiche an den Verankerungen und Kopplungen einzupressen. Auf eine vollständige Verfüllung ist zu achten. Dies ist durch Volumenvergleich und nachträgliches Abklopfen zu kontrollieren.

4.2.8.2 Einpressmörtel

Die an den Verankerungen und Kopplungen dafür vorgesehenen Bereiche sind vollständig mit Einpressmörtel nach DIN EN 447 zu verpressen. Für das Einpressverfahren gilt DIN EN 446.

5 Bestimmungen für Nutzung, Unterhalt, Wartung

Die Auswechselbarkeit der Spannglieder ist vom Spannverfahren her gegeben (siehe Anlage 9, Abschnitt 10).

Die Bedingungen, unter denen Spannglieder ausgetauscht werden können, die Anzahl der Spannglieder, die gleichzeitig ausgetauscht werden dürfen, sowie die bauseitigen Vorkehrungen sind im Einzelfall schon bei der Bauwerksplanung vorzusehen und festzulegen.

Für jeden Anwendungsfall sind die beim Trennen der Spannglieder zu beachtenden Arbeitsanweisungen und Arbeitsschutzmaßnahmen vom Ausführenden festzulegen und mit dem Bauherrn abzustimmen.

Allgemeine bauaufsichtliche Zulassung

Nr. Z-13.3-78

Seite 17 von 18 | 27. Oktober 2017

Folgende Normen werden in der allgemeinen bauaufsichtlichen Zulassung in Bezug genommen:

	0 00
DIN EN 1992-1-1:2011-01	Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken - Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau; Deutsche Fassung EN 1992-1-1:2004+AC:2010
DIN EN 1992-1-1/NA:2013-04	Nationaler Anhang - National festgelegte Parameter - Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken - Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau
DIN EN 1992-2:2010-12	Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken - Teil 2: Betonbrücken - Bemessungs- und Konstruktionsregeln; Deutsche Fassung EN 1992-2:2005+AC:2008
DIN EN 1992-2/NA:2013-04	Nationaler Anhang - National festgelegte Parameter - Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken - Teil 2: Betonbrücken - Bemessung und Konstruktionsregeln
DIN EN 1993-1-1:2010-12	Eurocode 3: Bemessung und Konstruktion von Stahlbauten – Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau; Deutsche Fassung EN 1993-1-1:2005+AC:2009
DIN EN 1993-1-1/NA:2010-12	Nationaler Anhang – National festgelegte Parameter - Eurocode 3: Bemessung und Konstruktion von Stahlbauten– Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau
DIN EN 1993-1-8:2010-12	Eurocode 3: Bemessung und Konstruktion von Stahlbauten – Teil 1-8: Bemessung von Anschlüssen; Deutsche Fassung EN 1993-1-8:2005+AC:2009
DIN EN 1993-1-8/NA:2010-12	Nationaler Anhang – National festgelegte Parameter - Eurocode 3: Bemessung und Konstruktion von Stahlbauten– Teil 1-8: Bemessung von Anschlüssen
DIN EN 13670:2011-03	Ausführung von Tragwerken aus Beton; Deutsche Fassung EN 13670:2009
DIN 1045-3:2012-03	Tragwerke aus Beton, Stahlbeton und Spannbeton - Teil 3: Bauausführung Anwendungsregeln zu DIN EN 13670
DIN EN 446:1996-07	Einpreßmörtel für Spannglieder - Einpreßverfahren
DIN EN 447:1996-07	Einpreßmörtel für Spannglieder - Anforderungen für übliche Einpreßmörtel
DIN EN 10204:2005-01	Metallische Erzeugnisse - Arten von Prüfbescheinigungen; Deutsche Fassung EN 10204:2004
DIN EN ISO 12944-4:1998-07	Beschichtungsstoffe - Korrosionsschutz von Stahlbauten durch Beschichtungssysteme -Teil 4: Arten von Oberflächen und Oberflächenvorbereitung (ISO 12944-4:1998); Deutsche Fassung EN ISO 12944-4:1998
DIN EN ISO 12944-5:2008-1	Beschichtungsstoffe - Korrosionsschutz von Stahlbauten durch Beschichtungssysteme -Teil 5: Beschichtungssysteme (ISO12944-5:2007); Deutsche Fassung EN ISO 12944-5:2007

Allgemeine bauaufsichtliche Zulassung

Nr. Z-13.3-78

Seite 18 von 18 | 27. Oktober 2017

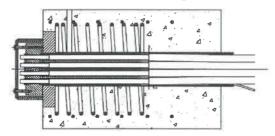
DIN EN ISO 12944-7:1998-07

Beschichtungsstoffe - Korrosionsschutz von Stahlbauten durch Beschichtungssysteme - Teil 7: Ausführung und Überwachung der Beschichtungsarbeiten (ISO 12944-7:1998);

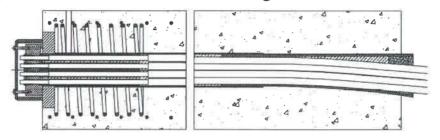
Deutsche Fassung EN ISO 12944-7:1998

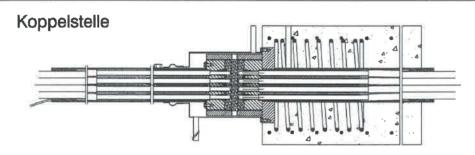
Dr.-Ing. Lars Eckfeldt

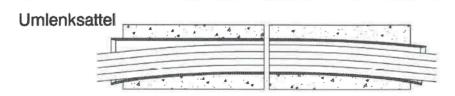
Referatsleiter


Beglaubigt

Deutsches Institut für Bautechnik


12




Spann- und Festanker ohne Umlenkung

Spann- und Festanker mit Umlenkung

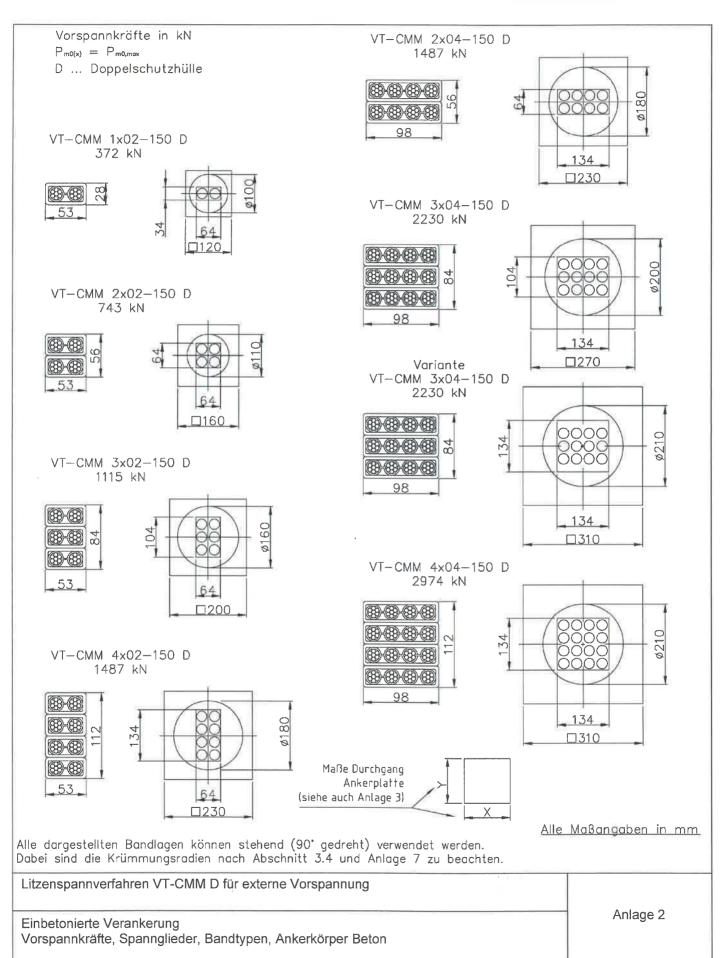
Bandformen / Spannglieder, Ankerkörper

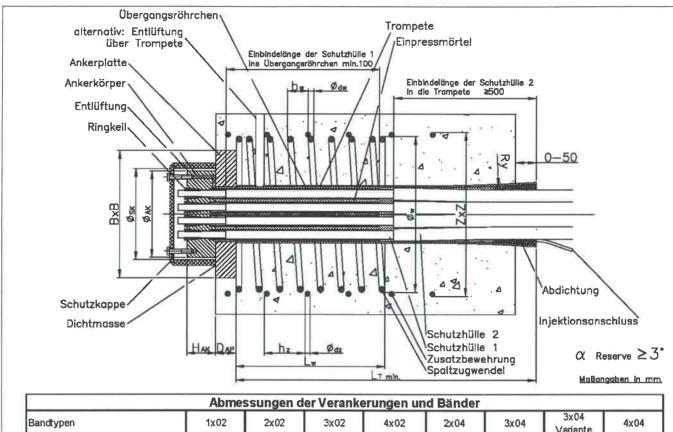
Spannglieder

Ankerkörper Beton

Koppelankerkörper

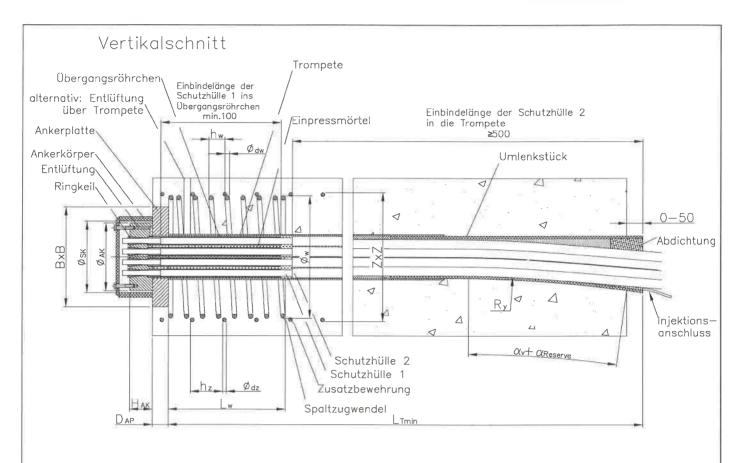
Ankerkörper Stahlbau



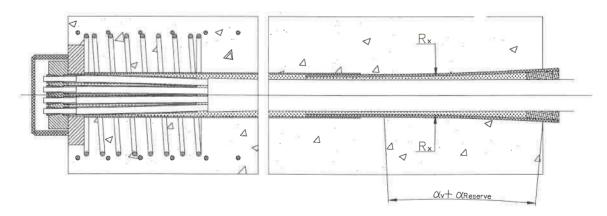


Litzenspannverfahren VT-CMM D für externe Vorspannung

Spann- und Festanker, Kopplung, Umlenksattel, Bandformen, Ankerkörper

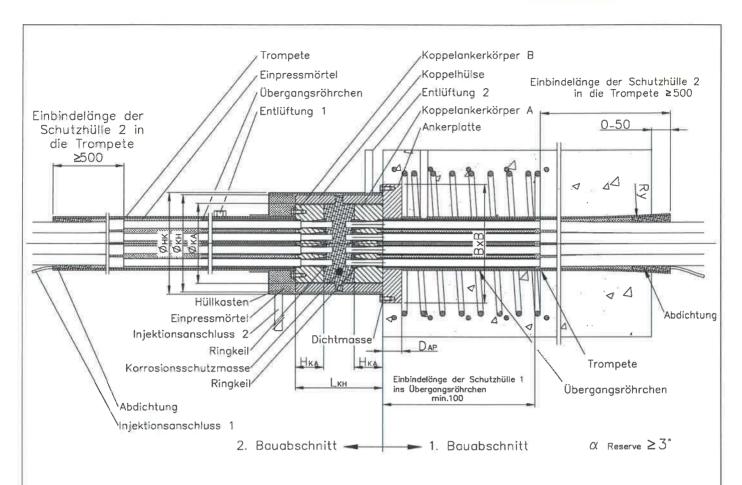


		F	bme	ssun	gen d	er Ve	ranke	erung	jen un	d Bä	nder						
Bandtypen		1x	02	2x	02	3х	02	4>	(02	2x	04	3х	04	3x Vari	04 ante	4x	:04
Vorspannkraft Pm06	k) = P _{m0,max}	372	kN	743	kN	111	5 kN	148	7 kN	148	7 kN	2230) kN	2230	0 kN	2974	4 kN
Ankerplatte																	
Seitenlänge	BxB	1:	20	10	60	2	00	2	30	2:	30	27	70	3	10	3	10
Dicke	DAP	1	5	2	20	2	25		30	3	0	4	0	5	0	5	0
Durchgang	YxX	34:	(64	64	x64	104	x64	134	4x64	64x	134	104	(134	134	(134	134)	k134
Ankerkörper																	
Durchmesser	ØAK	10	00	1	10	11	60`	1	80	18	30	20	00	2	10	2	10
Höhe	HAK	6	0	6	0	6	0		60	6	0	6	0	7	0	7	0
Bandabmessungen	axb	28:	(53	56	x53	84:	x53	112	2x53	56	(98	84)	(98	84)	(98	112	x98
Trompete		Ī				Ì										$\overline{}$	
Wandstärke	PE/S235JR	6	/3	6	/3	8	/3	8	3/3	8.	/3	8	/3	8.	/3	8	/3
Länge 1)	Lt _{min} 1)	7	12	7:	24	7:	56	8	12	12	85	12	95	15	808	13	06
1) Angaben sind An	haltswerte, bei d	er Plan	ung si	nd die I	Festleg	ungen	nach A	bschn	itt 2.1.6	der Be	sonde	ren Bes	stimmu	ngen z	u berü	cksicht	igen.
Schutzkappe innen			10		20		70	The same of the sa	90	-	10		10		20		20
				We	ndel-	und 2	Zusat	zbew	ehrur	ıg							
Betonfestigkeiten f	mi, cube	34	44	34	44	34	44	34	44	34	44	34	44	34	44	34	44
Wendel	B 500 B																
Außen	min Ø w	-	-	230	200	270	230	310	270	370	330	420	380	420	380	420	380
Draht	min Ødw	se:	-	12	12	12	12	12	12	14	14	14	14	14	14	14	14
Ganghöhe	max h _w	948	-	40	40	50	50	50	50	50	50	50	50	50	50	50	50
Länge	min L _w	-	-	240	240	300	300	325	325	400	400	450	450	450	450	450	450
Zusatzbewehrung	B 500 B							100									
Anzahi	nz	5	5	6	6	4	4	4	4	4	4	6	6	6	6	6	6
Durchmesser	min ⊘dz	10	10	8	8	12	12	14	14	14	14	14	14	14	14	14	14
Abstand	max hz	40	40	60	60	80	80	100	100	100	100	100	100	100	100	100	100
Grösse	min ZxZ	150	140	230	200	270	230	310	270	370	330	420	380	420	380	420	380
				Minin	nale A	\chs-	und	Rand	abstä	nde							
Randabstand	min R	105	100	145	130	165	145	185	165	215	195	240	220	240	220	240	220
Achsabstand	min A	170	160	250	220	290	250	330	290	390	350	440	400	440	400	440	400


Litzenspannverfahren VT-CMM D für externe Vorspannung

Einbetonierte Verankerung Abmessungen, Wendel und Zusatzbewehrung

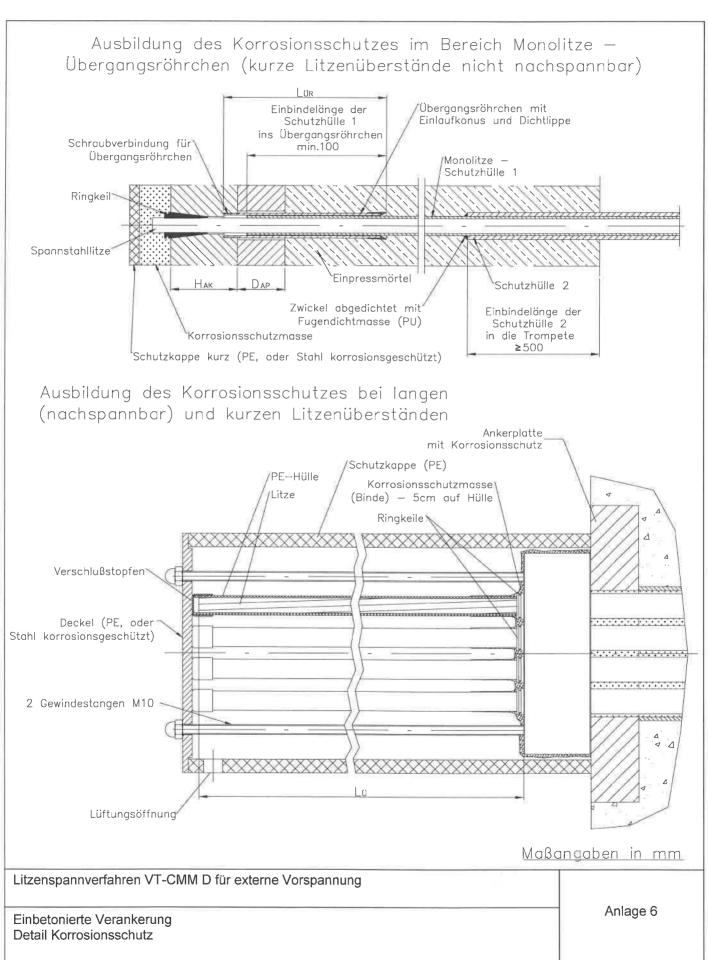
Horizontalschnitt


 α Reserve $\geq 3^{\circ}$ Maßangaben in mm

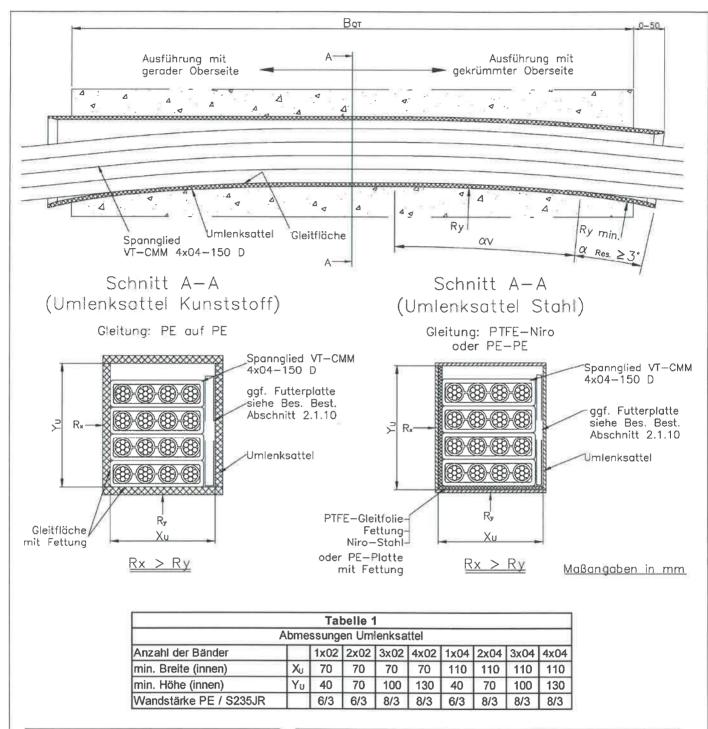
Litzenspannverfahren VT-CMM D für externe Vorspannung

Einbetonierte Verankerung

Längsschnitt VT-CMM 4x04-150 D (mit Umlenkung)


	Abmessungen der Kopplungen								
Bandtypen			2x02	4x02	2x04	3x04	4x04		
Vorspannkraft Pr	n0(x) = Pm	0,max	743 kN	1487 kN	1487 kN	2230 kN	2974 kN		
Sinnbild			®						
Ankerplatte									
Seitenlänge		BxB	160	230	230	270	310		
Dicke		DAP	20	30	30	40	50		
Durchgang		YxX	64x64	134x64	64x134	104x134	134x134		
Koppelankerk	örper A u	nd B							
Durchmesser	- And redicate	ØKA	M110x4	Tr180x5	Tr180x5	Tr200x5	Tr210x5		
Höhe		Нка	60	60	60	65	75		
Koppelhülse									
Länge		Lich	160	190	190	200	230		
Gewinde		Øga	M110x4	Tr180x5	Tr180x5	Tr200x5	Tr210x5		
Durchmesser	außen	Øкн	139	212	212	237	254		
Hüllkasten									
Länge	innen	L _{HK}	190	220	220	230	260		
Durchmesser	innen	ØHK	145	220	220	245	260		

Maßangaben in mm


Litzenspannverfahren \	VT-CMM [) für	externe	Vorspannung
------------------------	----------	-------	---------	-------------

Längsschnitt VT-CMM 4x04-150 D Koppelstelle – einbetonierte Verankerung

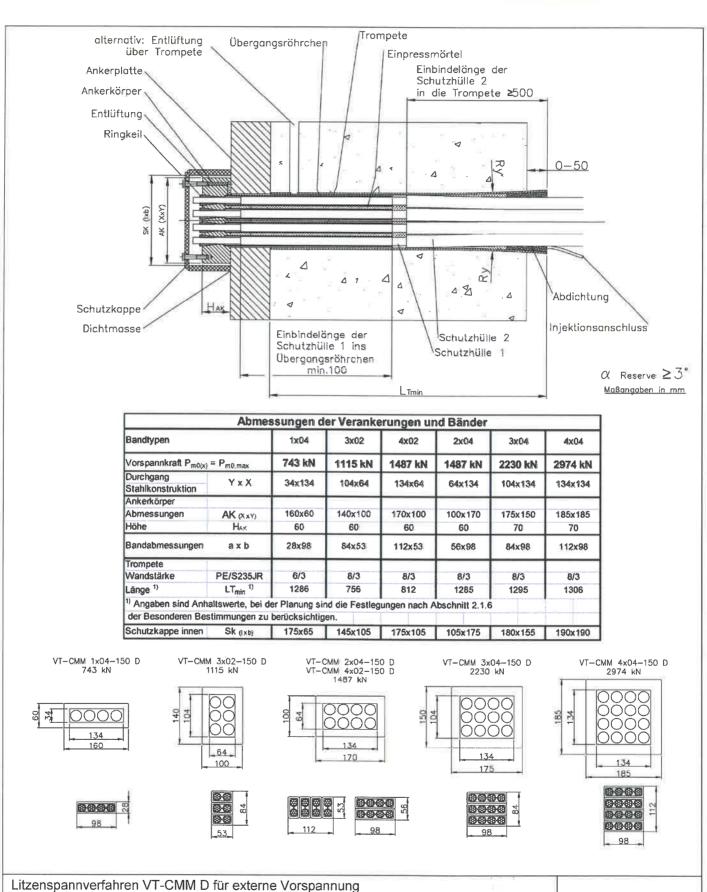

Tab	Tabelle 2				
Umlenkra	dius R _X = ∞				
Kleinste Krüm	mungsradien R _Y				
bei 4 Bändem	≥ 5,45 m				
bei 3 Bändern	≥ 4,45 m				
bei 2 Bändem	≥ 3,90 m				
bei 1 Band	≥ 2,25 m				

Tabelle 3				
Umlenkradius Rx	≥10,00 m	≥15,00 m		
Kle	inste Krümmungsradien	Ry		
bei 4 Bändem	≥6,00m	≥ 5,30m		
bei 3 Bändern	≥ 5,00m	≥ 4,70m		
bei 2 Bändern	≥ 4,30m	≥ 4,10m		
bei 1 Band	≥ 2,40m	≥ 2,30m		

Litzenspannverfahren V	/T-CMM	D für	externe	Vorspannung
------------------------	--------	-------	---------	-------------

Umlenksattel aus Kunststoff oder Stahl

Auf Beton aufgesetzte Verankerung

Abmessungen der Verankerung und der Bänder

1 Spannstahl

Als Spannstahl werden allgemein bauaufsichtlich zugelassene 7-drähtige Spannstahllitzen \varnothing 15,7 mm, St 1570/1770, Nennguerschnitt 150 mm², verwendet.

2 Spannglieder

2.1 Beschreibung der Spannglieder

Die VT-CMM Litzenspannglieder Typ D (doppelt ummantelt)sind für externe Vorspannung verwendbar. Sie bestehen aus 2 und 4 nebeneinanderliegenden Spannstahllitzen, die werksmäßig mit Korrosionsschutzmasse und Schutzhülle Typ 1A, bestehend aus einem mindestens 1,8 mm dicken PE-Mantel und Schutzhülle 2, bestehend aus einem mindestens 3 mm dicken PE-Mantel, umgeben sind. Bei der Schutzhülle 1 sind die PE-Mäntel der einzelnen Litzen durch etwa 3 mm breite Stege miteinander verbunden. Hierdurch erhalten die Spannglieder die Form eines flachen Bandes. Um die aus 2 oder 4 Litzen bestehenden, einfach ummantelten Bänder wird ein zweiter, rechteckiger Mantel (Schutzhülle 2) aufgebracht.

2.2 Herstellung der Spannglieder

Die doppelt ummantelten Spannglieder VT-CMM Typ D werden im Werk, in einem Doppel-Extrusionsverfahren hergestellt. Im ersten Extrusionsvorgang wird die Korrosionsschutzmasse auf die Litzen aufgetragen diese mit Schutzhülle Typ 1A umhüllt. Die Schutzhülle Typ 1A besteht aus einem mindestens 1,8 mm dicken PE-Mantel. Im zweiten Extrusionsvorgang wird die äußere, mindestens 3 mm dicke Schutzhülle 2 aus dem gleichen Material aufgebracht. Die Spannglieder werden als Mehrfachlängen oder als Einzellängen auf Haspeln gewickelt. Das Ablängen auf die erforderliche Länge geschieht entweder auf der Baustelle oder bereits im Werk. Erfolgt das Ablängen der Spannglieder im Werk, so können die unter Einhaltung des minimalen Krümmungsradius (entsprechend Abschnitt 2.2.2 der Zulassung) gewickelten Spannglieder auch körperlos transportiert werden. Die Spannglieder sind in diesem Fall liegend zu transportieren. Der Wickel- und Abwickelvorgang erfolgt nicht körperlos.

3 Verankerung

3.1 Spannanker und Festanker

Die Verankerung der Spannglieder erfolgt mit Ankerplatten, Ankerkörpern mit konischen Bohrungen parallel zur Spanngliedachse und mit Hilfe 3-teiliger Ringkeile.

Der Übergangsbereich zwischen den Spannbändern und der Verankerung wird wie folgt ausgebildet (siehe Anlagen 3 bis 6 und 8):

An der inneren Seite der Ankerplatte wird eine rechteckige oder quadratische Trompete aus Stahl angeschweißt und korrosionsgeschützt. Die Länge des Rohres beträgt mindestens 40 cm und kann mittels übergreifend eingestecktem PE-Umlenkstück bis auf Querträgerdicke verlängert werden.

In die Ankerkörper werden ebenfalls innenseitig Übergangsröhrchen eingeschraubt, deren Länge je nach vorgesehener Spannbandbewegung ermittelt wird (siehe Anlage 9, Abschnitt 5.2.2), an Festankern aber mindestens 30 cm beträgt.

Die Spannbänder werden an den Ankereinlaufstellen je nach vorgesehener Spannbandbewegung auf entsprechende Länge von den PE-Schutzhüllen befreit und zwar so, dass die Schutzhülle 1 nach dem Vorspannen höchstens bis an den Ankerkörper reicht und mindestens 100 mm in das Übergangsröhrchen einmündet. Die Schutzhülle 2 muss im gespannten Zustand mindestens 50 cm in die Trompeten einbinden (siehe Anlagen 3 bis 6 und 8).

Nach dem Vorspannen wird der Raum innerhalb der Trompete mit Einpressmörtel verfüllt, wobei das Trompetenende vorab abgedichtet wird.

Die Litzenüberstände, Keilzwischenräume sowie eventuelle Spalt-Hohlräume innerhalb der Ankerkörperbohrungen und Übergangsröhrchen werden mit einer Hilfsvorrichtung mit Korrosionsschutzmasse verpresst. Danach werden auf die Litzenüberstände PE-Hüllen aufgeschoben deren Enden knapp über die Litzenenden ragen und mit Kunststoffstopfen verschlossen, die ihrerseits

Litzenspannverfahren VT-CMM D für externe Vorspannung	112 4	
Technische Beschreibung des Spannverfahrens		Anlage 9 Seite 1 von 5

von einer PE- Abdeckkappe, mittels Gewindestangen befestigt, angedrückt werden (siehe Anlage 6 unten). Die Länge der Litzenüberstände wird im Einvernehmen mit dem Bauherrn so festgelegt, dass gegebenenfalls Spannkraftkorrekturen vorgenommen werden können.

Es dürfen keine Knicke des Spanngliedes innerhalb der Trompete und am Trompetenende entstehen (Abschnitt 2.1.6 der Besonderen Bestimmungen). Damit Abweichungen von der planmäßigen Spanngliedlage nicht zu Knicken führen, ist an jedem Trompetenende eine Umlenkreserve von mindestens 3° mit dem Mindestradius nach Anlagen 7 und 9, Abschnitt 4.2, vorzusehen.

3.2 Koppelanker

Es sind nur feste Koppelungen vorgesehen. Der Innenraum der Koppelhülse ist mit Korrosionsschutzmasse (s. Anlage 9, Abschnitt 8) zu füllen.

4 Umlenkung

4.1 Ausführungsformen der Umlenkstellen

An Umlenkstellen werden die Spannbänder in Umlenkkästen aus korrosionsgeschütztem Stahl oder PE-Kunststoff geführt. Die Seiten der Umlenkkästen sind der Geometrie der Spanngliedführung angepasst. Die Kästen werden einbetoniert. Es sind folgende Ausführungen möglich:

korrosionsgeschüzter Stahl

 $t \ge 3 \text{ mm}$

PE-Kunststoff

 $t \ge 6$ bzw. 8 mm

Es dürfen keine Knicke des Spanngliedes an den Sattelenden entstehen. Damit Abweichungen von der planmäßigen Spanngliedlage nicht zu Knicken führen, ist an jedem Sattelende zusätzlich zur planmäßigen Umlenkung eine Umlenkreserve von mindestens 3° mit dem Mindestradius nach Anlagen 7 und 9, Abschnitt 4.2, vorzusehen.

Die Spannbänder werden bevorzugt mittels vorwiegend "äußerer Gleitung" über die Umlenksattelflächen bewegt. Die äußere Gleitung wird durch Schmierung der Umlenkflächen des Sattels bzw. der Gleitflächen der Bänder bewirkt.

Der Anteil an innerer Gleitung darf maximal 25% des Ziehweges und maximal 20 cm betragen (der kleinere Wert ist maßgebend).

Es gibt zwei Möglichkeiten für die Sattelausbildung:

a) Sättel mit Gleitfuge sind wie folgt aufgebaut:

Zwischen dem unteren Spannband und dem Umlenksattel aus korrosionsgeschütztem Stahl werden eine 2 mm dicke PTFE-Folie (Polytetrafluoretylen) und ein mindestens 2,0 mm dickes, gefettetes, nichtrostendes Stahlblech eingelegt. Die Gleitung erfolgt zwischen Folie und Blech.

Weiterhin ist es möglich, in den Umlenksattel aus korrosionsgeschütztem Stahl eine mindestens 4 mm dicke PE-Kunststoffplatte einzulegen oder einen PE-Kunststoffsattel zu verwenden. In beiden Fällen dient nur eine Fettschicht als Gleitfuge.

b) Sättel ohne besondere Maßnahmen für die Gleitfuge

Es dürfen Umlenksättel aus PE-Kunststoff oder korrosionsgeschütztem Stahl verwendet werden.

4.2 Krümmungsradien

Die Bänder verhalten sich aufgrund ihrer Geometrie anders bei der Biegung um die x-Achse (um die breite Seite) als bei der Biegung um die y-Achse (um die schmale Seite) (siehe Anlage 7).

Bei zweiachsiger Umlenkung dürfen die Spannglieder unter Einhaltung der in Anlage 7, Tabelle 3 angegebenen kleinsten Krümmungsradien R_Y und R_X umgelenkt werden.

Bei einachsiger Umlenkung um die breite Seite der Bänder (um die x-Achse) sind die Krümmungsradien R_Y nach Anlage 7, Tabelle 2 einzuhalten. Bei einachsiger Umlenkung um die schmale Seite der Bänder (um die y-Achse) darf der Krümmungsradius R_X 10 m nicht unterschreiten.

Litzenspannverfahren VT-CMM D für externe Vorspannung	
Technische Beschreibung des Spannverfahrens	Anlage 9 Seite 2 von 5

4.3 Reibungskennwerte

- **4.3.1** Bei Umlenksätteln nach Ausführung 4.1a) erfolgt die Bewegung ausschließlich zwischen Gleitfolie und Blech. Die Reibung ist weitgehend unabhängig von der Auflagerpressung und daher auch unabhängig von der Anzahl der übereinanderliegenden Spannbänder. Der Reibungsbeiwert beträgt μ = 0,06.
- **4.3.2** Bei Umlenksätteln nach Ausführung 4.1b) ist, bei gleichzeitigem Spannen aller Spannbänder, der Reibungsbeiwert nach folgender Tabelle anzusetzen:

Anzahl der übereinanderliegenden Spannbänder	Reibungsbeiwert
n	μ
1	0,06
2	0,08
3	0,10
4	0,12

Wenn die Spannbänder bei einachsiger Umlenkung lagenweise, vom untersten Spannband am Sattel beginnend gespannt werden, ist der Reibungsbeiwert $\mu = 0.06$ anzusetzen.

5 Montage

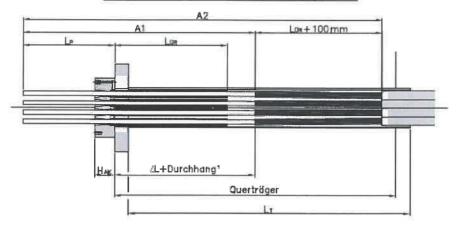
5.1 Allgemeines

Die Spannbänder werden bei der Herstellung auf Haspeln gewickelt und entweder im Werk oder auf der Baustelle abgelängt. Abhängig von der Länge werden sie mit oder ohne Haspeln transportiert. Der Mindestdurchmesser beträgt 1,10 m.

An den Austrittspunkten aus dem Bauwerk (End- oder Querträger im Verankerungs- oder Umlenkbereich) müssen sich die Spannglieder frei abheben. Knicke im Spannglied sind unzulässig. Nach dem Straffen der Spannglieder ist dies zu überprüfen.

5.2 Montagefolge

5.2.1 Einbau der Spannbänder


Die Spannbänder werden mit einer Zugwinde in die vorgesehene Lage eingezogen. Die Umlenk- und Verankerungsrohre sind unmittelbar vorher gründlich zu reinigen, damit die "äußere Gleitung" der Spannbänder beim Vorspannen nicht behindert wird. Zur Vermeidung von Beschädigungen sind zum Einziehen Gleitbleche, Kunststoffrohre, Rollen u.ä. vorgesehen. Die Spannbänder werden in den Verankerungen, Sätteln und auf Unterstützungen ausgerichtet. Bei Umlenksätteln nach Variante a) (siehe Anlage 9, Abschnitt 4.1) sind vor dem Einziehen der Spannbänder die Gleiteinrichtungen (PTFE Gleitfolie und gefettetes Blech aus nichtrostendem Stahl) einzubauen

Litzenspannverfahren VT-CMM D für externe Vorspannung	
Technische Beschreibung des Spannverfahrens	Anlage 9 Seite 3 von 5

5.2.2 Entfernen der Schutzhüllen im Verankerungsbereich

Zustand am Spannanker vor dem Spannen

Spannankerseitig:

Entfernen der Schutzhülle 2 auf eine Länge von

 A_2 = $L_P + \Delta L + Durchhang^1 + L_{0R} + 100 \text{ mm}$ L_P = Litzenüberstand für Pressenansatz

L_T = Trompetenlänge (L_T ≥ L_{OR} + 600 mm)

ΔL = Dehnweg laut Statik

 L_{UR} = Länge der Übergangsröhrchen (\geq 300 mm, $\geq \Delta L$ + 100)

Entfernen der Schutzhülle 1 auf die Länge von

 $A_1 = L_P + \Delta L + Durchhang^1$

Auftrennen der Stege der Schutzhülle 1 vom Spanngliedende bis Schutzhülle 2

Festankerseitig:

 $A_2 = A_1 + L_{0R}$

 $A_1 = H_{AK} + \sim 30 \text{ mm}$

Lor = Länge der Übergangsröhrchen (≥ 300 mm)

5.2.3 Markieren und Ausrichten der Spannbänder

Bei mehrlagigen Bändern wird darauf geachtet, dass die Bänder möglichst genau übereinanderliegen.

An den Spann- und Festankern ist die Schutzhülle 2 spanngliedseitig nahe der Stelle des Austritts aus den Trompeten in einem definierten Abstand vom Ende der Schutzhülle 1 zu markieren.

An jedem Umlenksattel ist jedes Spanngliedband in einem definierten Abstand zum Umlenksattel mit einer Markierung zu versehen, mit deren Hilfe die Bewegung der Schutzhülle 2 der einzelnen Bänder zum Umlenksattel beim weiteren Vorspannen eindeutig bestimmt werden kann.

Die Lage der Bänder in den Sätteln und Trompeten wird nach Aufbringen einer Vorlast von ca. 10 % der Spannkraft nochmals kontrolliert und gegebenenfalls mit Klemmen gesichert.

Auf die Berücksichtigung des Durchhangs kann verzichtet werden, wenn das Spannglied vor dem Ablängen der Schutzhüllen zwischen den Umlenkungen und Verankerungen so unterstützt wird, dass es nahezu die Geometrie des Endzustandes besitzt (kein girlandenartiger Durchhang)

Litzenspannverfahren VT-CMM D für externe Vorspannung

Technische Beschreibung des Spannverfahrens

Anlage 9 Seite 4 von 5

6 Vorspannen

Das Vorspannen erfolgt im Allgemeinen durch gleichzeitiges Spannen der Litzen aller Bänder. Die Bandbewegungen werden an einzelnen Umlenksätteln und jedenfalls an den Ankereinlauftrompeten nach dem Spannvorgang gemessen und protokolliert (siehe Abschnitte 4.2.3 und 4.2.4). Der Anteil an innerer Gleitung darf maximal 25 % des Ziehweges und maximal 20cm betragen (der kleinere Wert ist maßgebend).

Bei den Umlenksätteln mit nicht eindeutiger seitlicher Anlage der Spannbänder werden zur Lagesicherung beim Vorspannen Klemmschellen verwendet und nach dem Vorspannen die seitlichen Spalträume mit PE-Futterplatten zumindest an einer Einlaufseite auf Dauer gesichert.

7 Verpressen der Trompeten

In die Trompete wird ein Injektionsanschluss eingebaut und die Spalträume am Spanngliedeinlauf abgedichtet. Der Innenraum wird mit Einpressmörtel nach DIN EN 477:1996-07 verpresst.

8 Korrosionsschutz

Die nach dem Einpressen noch vorhandenen Hohlräume im Bereich der Ankerkörper (Spalte zwischen den Teilen eines Keils, zwischen Ankerkörper und Ankerplatte, Litze und Übergangsrohr bzw. Schutzhülle 1 und Übergangsrohr) werden mittels einer Spezialvorrichtung mit Korrosionsschutzmasse (siehe Anlage 10) verpresst, wobei die Litzenüberstände gleichzeitig umhüllt werden. Bei Koppelstellen geschieht das Verpressen über die Koppelhülse.

Die freien Ankerkörperflächen werden mit Korrosionsschutzmasse oder –binde abgedeckt. Danach werden auf die Litzenüberstände PE-Röhrchen aufgeschoben. Vor dem Überschieben sind die PE-Röhrchen am Ende zum Ankerkörper mit einem 8-10 cm breitem Densoband zu umwickeln. Davon werden mindestens 5 cm Breite des Densobandes um das PE-Röhrchen gewickelt. Der verbleibende Überstand des Densobandes über das PE-Röhrchenende ist als Hutkrempe ausgebildet. Nach dem Überschieben ist die Hutkrempe am Ringkörper anzudrücken. Am lufseitigen Ende wird das PE-Röhrchen mit Stöpseln abgeschlossen und Schutzkappen mittels Gewindestangen an den Ankerkörpern befestigt. Bei langen Kappen werden diese gegen Abkippen mit Unterstützungs- oder Abhängevorrichtungen gesichert.

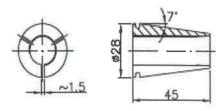
9 Unterstützungen

Bei freien Spanngliedlängen > 35 m werden die Spannglieder im Abstand von 35 m mittels Haltevorrichtungen am Tragwerk befestigt, um Eigenschwingungen zu dämpfen (siehe Abschnitt 4.2.4 der besonderen Bestimmungen).

10 Spannkraftkontrolle und Spanngliedaustausch

Im Einvernehmen mit dem Bauherrn kann der Litzenüberstand so festgelegt werden, dass mit Berücksichtigung der Pressenlänge Spannkraftkontrollen oder -korrekturen vorgenommen werden können. Für ein komplettes Entspannen muss die gesamte anteilige Dehnlänge plus der für die Spannpresse erforderliche Litzenüberstand verbleiben.

Ohne Litzenüberstand kann der Spanngliedtausch mittels mechanischem oder thermischem Trennen in der freien Spanngliedlänge erfolgen.


Litzenspannverfahren VT-CMM D für externe Vorspannung	
Technische Beschreibung des Spannverfahrens	Anlage 9 Seite 5 von 5

Bezeichnung	Material	Norm
Verankerungen		
Ankerplatte	Baustahl *	DIN EN 10 025-2:2005-04
Ankerkörper	Vergütungsstahl *	DIN EN 10 083-2:2006-10
Ringkeil	beim DIBt hinterlegt	
Schutzkappe (korrosionsgeschützt)	PE oder Baustahl	DIN EN ISO 1872-1:1999-10 DIN EN 10 025-2:2005-04
Übergangsröhrchen	PE oder PP	DIN EN ISO 1872-1:1999-10 DIN EN ISO 1873-1:1995-12
Trompetenrohr (korrosionsgeschützt)	PE oder Baustahl	DIN EN ISO 1872-1:1999-10 DIN EN 10 025-2:2005-04
Abdichtung am Trompetenende	PU-Schaum, Fugendichtmasse *	
Injektionsmörtel	Einpressmörtel	DIN EN 447:1996-07
Spannglied		
Schutzhülle 1	PE *	DIN EN ISO 1872-1:1999-10
Schutzhülle 2	PE *	DIN EN ISO 1872-1:1999-10
Korrosionsschutzmasse	beim DIBt hinterlegt	
Korrosionsschutz Verankerungen		
Korrosionsschutzmasse	beim DIBt hinterlegt	
Korrosionsschutzbinde	beim DIBt hinterlegt	
Koppelstelle		
Hüllkasten für Kopplung	Baustahl	DIN EN 10 025-2:2005-04
Koppelankerkörper A und B	Vergütungsstahl *	DIN EN 10 083-2:2006-10
Koppelhülse	Baustahl *	DIN EN 10210-1:2006-07
Umlenkung mit Gleiteinrichtung		
Umlenksattel (korrosionsgeschützt)	PE oder Baustahl	DIN EN ISO 1872-1:1999-10 DIN EN 10 025-2:2005-04
Gleitfolie	PTFE	DIN EN ISO 13000-1:2006-02
Gleitblech	Niroblech	DIN EN 10 088-7:2012-01
Gleitplatte	PE	DIN EN ISO 1872-1:1999-10
Gleitmittel	beim DIBt hinterlegt	DIN 51502
Futterplatten, Umlenkplatten	PE	DIN EN ISO 1872-1:1999-10

^{*)} Materialspezifikationen beim DIBt hinterlegt

Ringkeil Typ F oder Typ H:

Alle Masangaben in mm

Litzenspannverfahren VT-CMM D für externe Vorspannung	
Materialeigenschaften	Anlage 10

Materialprüfungsamt Nordrhein-Westfalen

Prüfen · Überwachen · Zertifizieren

Übereinstimmungszertifikat NRW02 – 00303-2.1

(Version: 01)

Hiermit wird gemäß § 25 Abs. 2 Nr. 2 der Bauordnung für das Land Nordrhein-Westfalen – Landesbauordnung – (BauO NRW) vom 15.12.2016 bestätigt, dass das Bauprodukt

Litzenspannverfahren VT-CMM D für externe Vorspannung

hergestellt im Herstellwerk

BBR-VT International Ltd

Bahnstraße 23 CH-8603 SCHWERZENBACH

entsprechend den Ergebnissen

- der werkseigenen Produktionskontrolle des Herstellers,
- der Produktprüfung durch das MPA NRW und
- der Fremdüberwachung durch das MPA NRW

den Anforderungen der

allgemeinen bauaufsichtlichen Zulassung Nr. Z-13.3-78 vom 27.10.2017

entspricht.

Das Herstellwerk ist somit berechtigt, das Bauprodukt mit dem Übereinstimmungszeichen (Ü-Zeichen) gemäß der Übereinstimmungszeichen-Verordnung zu kennzeichnen.

Das Zertifikat ist gültig vom 02.09.2017 bis 02.09.2020.

Dortmund, 24.11.2017

im Auftrag

stellv. Leiter der Zertifizierungsstelle

Dieses Zertifikat umfasst 1 Seite.

KB Vorspann-Technik GmbH

Weitwörth 25 5151 Nussdorf a. H. Austria

Tel +43 6272 40790 Fax +43 6272 40790 11

www.kb-vt.com office@kb-vt.com

KB Vorspann-Technik GmbH

Bahnhofstrasse 108 82166 Gräfelfing Germany

Tel +49 89 724 49 69 0 Fax +49 89 724 49 69 12

www.kb-vt.com office@kb-vt.com

BBR VT International Ltd

Technical Headquarters and Business Development Centre Switzerland

